Vaccinia Virus–Encoded Ribonucleotide Reductase Subunits Are Differentially Required for Replication and Pathogenesis

نویسندگان

  • Don B. Gammon
  • Branawan Gowrishankar
  • Sophie Duraffour
  • Graciela Andrei
  • Chris Upton
  • David H. Evans
چکیده

Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R1(2)R2(2) heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools.

The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), ...

متن کامل

Vaccinia virus induces ribonucleotide reductase in primate cells.

Infection of monkey kidney (BSC-40) cells with vaccinia virus strain WR resulted in a marked increase in ribonucleoside diphosphate reductase (EC 1.17.4.1) activity as measured by CDP reduction in cell-free extracts. After a synchronous infection, increased activity was detected at 2 h, peaked at 4 to 5 h, and then declined between 6 and 8 h to the endogenous cellular level. The induction, dete...

متن کامل

The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis.

Ribonucleotide reductase (RNR) is the key enzyme in the biosynthesis of deoxyribonucleotides. Alpha- and gammaherpesviruses express a functional enzyme, since they code for both the R1 and the R2 subunits. By contrast, betaherpesviruses contain an open reading frame (ORF) with homology to R1, but an ORF for R2 is absent, suggesting that they do not express a functional RNR. The M45 protein of m...

متن کامل

Herpes simplex virus type 1 ribonucleotide reductase null mutants induce lesions in guinea pigs.

Two herpes simplex virus type 1 ribonucleotide reductase null mutants, hrR3 and ICP6 delta, produced cutaneous lesions in guinea pigs as severe as those of wild-type strains. The lesions induced by hrR3 resulted from in vivo replication of the mutant virus, suggesting that this virus-encoded enzyme is nonessential for virus replication in guinea pigs.

متن کامل

Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase.

Repeated passages of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1,000-fold. Analyses of viral protein synthesis by using [35S]methionine pulse-labeling at intervals throughout the infection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010